Performance Parameters

<table>
<thead>
<tr>
<th>TEG PERFORMANCE AT SPECIFIED HOT SIDE TEMPERATURE</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimum Power Output</td>
<td>Optimum Voltage Usut, V</td>
<td>Open Circuit Voltage Uoc, V</td>
<td>Resistance ACR, Ohm</td>
<td>H mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pout, W</td>
<td>85°C</td>
<td>55°C</td>
<td>35°C</td>
<td>85°C</td>
<td>55°C</td>
<td>35°C</td>
</tr>
<tr>
<td>1MD02-035-03TEG</td>
<td>0.03</td>
<td>0.01</td>
<td>0.001</td>
<td>0.51</td>
<td>0.24</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Performance values are specified for TEG cold side at +27°C, Dry Air. Optimum Power and Voltage are given at Optimum Load Resistance.

Dimensions

Manufacturing options

A. TEG Assembly:
1. Solder Sn-Sb, Tmelt=230°C (default assembly solder)
2. Solder Au-Sn, Tmelt=280°C (optional solution, by request)

B. TEG Ceramics:
1. Al2O3(100%) - default
2. AlN - by request

C. Ceramics Surface Options:
1. Blank ceramics - default
2. Metallized (Au plating)
3. Metallized and pre-tinned with:
 3.1. In-Sn, Tmelt =117°C
 3.2. Sn-Bi, Tmelt = 138°C
 3.3. In-Ag, Tmelt = 143°C
 3.4. In, Tmelt = 157°C
 3.5. Pb-Sn, Tmelt =183°C
 3.6. Optional type (can be specified by Customer)

D. Thermistors (optional)
Can be mounted to ceramics edge. Calibration is available by request.

E. Terminal contacts
1. Blank, tinned Copper Wires
2. Insulated Wires
3. Insulated, color coded
4. WB pads or Posts (default)
5. Flip-Chip (optional)
Performance Data 1MD02-035-03TEG

Cold Side Temperature, Tcold

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Values at Hot Side Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>85°C</td>
<td>55°C</td>
</tr>
<tr>
<td>Cold Side Temperature, Tcold</td>
<td>°C</td>
<td>27</td>
</tr>
<tr>
<td>Optimum Efficiency, Opt η</td>
<td>%</td>
<td>2.67</td>
</tr>
<tr>
<td>Optimum Power, Popt</td>
<td>W</td>
<td>0.031</td>
</tr>
<tr>
<td>Optimum Voltage, Uopt</td>
<td>V</td>
<td>0.507</td>
</tr>
<tr>
<td>AC Resistance, Rteg</td>
<td>Ohm</td>
<td>6.06</td>
</tr>
<tr>
<td>Optimum Load Resistance, Rload</td>
<td>Ohm</td>
<td>8.18</td>
</tr>
<tr>
<td>Open Circuit Voltage, Uoc</td>
<td>V</td>
<td>0.88</td>
</tr>
<tr>
<td>Short Circuit Current, Isc</td>
<td>A</td>
<td>0.15</td>
</tr>
<tr>
<td>Thermal Resistance, Rt</td>
<td>°C/W</td>
<td>49.21</td>
</tr>
</tbody>
</table>

Note: Power Generation performance charts are specified in Optimum conditions, dry air, with cold side temperature set at +27°C and 50°C. Heatsink thermal resistance is not included into estimations.
Thermoelectric Generator Overview

Application Tips

1. Never heat TEG module more than 200°C (TEG is assembled at 230°C).
2. TEG module to be fixed between hot and cold exchangers with an optimal thermal contact for the best efficiency. Improper contact may reduce dT level and power output.
3. TEG polarity depends on applied hot and cold side orientation

Installation

1. Mechanical Mounting. TEG is placed between two heat exchangers. This construction is fixed by screws or in another mechanical way. It is suitable for relatively large TEG modules (with dimensions 15x15mm² and larger). Miniature TEG types may require another assembling methods.
2. Soldering. This method is suitable for a TEG module with metallized outside surfaces. RMT provides this option and also makes pre-tinning for TE generators.
3. Glueing. It is an up-to-date method that is used by many customers due to availability of glues with good thermoconductive properties. A glue is usually based on some epoxy compound filled with some thermoconductive material such as graphite or diamond powders, silver, SiN and others. The application of a specific type depends on application features and the type of a TEG module.
Additional Options

Terminal Contacts Options
The wires by default are of tinned Copper, blank (not insulated). Various options for isolated wires are available by request. The available solutions include isolated wires, isolated color-coded wires, flexible multicore wires and more.

Terminal Contacts Modification
TE Generator terminal contacts can be modified from standard WB pads solution to WB posts type or Flip-Chip if required.

TEG Height Modification
Standard thermoelectric generator height can be modified without performance changes by using ceramics of different thickness. Standard thermoelectric generator height (specified in this datasheet) may be modified in a range -0.5..+1.0mm.

TEG Shape Modification
Standard thermoelectric generator shape can be modified without performance changes RMT has full-featured flexibility with thermoelectric generator shape and ceramics modification.
Thermoelectric Generator Basics

Simplified TE Generator estimations

The level of power output of thermoelectric generator in conditions specified can be estimated by the following formulas.

\[E = \alpha \times (T_{\text{hot}} - T_{\text{cold}}) \times N \]

\[I = \frac{E}{(R_{\text{reg}} + R_{\text{load}})} \]

\[P_{\text{out}} = I^2 \times R_{\text{load}} \]

Getting data from TEG type name

RMT thermoelectric generators have a nomenclature system that allows to get the required data for estimations quickly.

1MD02-035-05TEG

General R_{\text{reg}} (ACR) values are specified in the datasheet in main table (page 1). Thermoelectric generator R_{\text{reg}} value depends on the ambient temperature. For the precise estimations, please, contact RMT specialists directly.
Thermoelectric Generator Basics

Resistances and TEG Efficiency

Thermoelectric generator best efficiency is reached at Load Resistance (R\text{load}) close to thermoelectric generator resistance R\text{tmg}.

In most cases thermoelectric generator best efficiency is reached at R\text{load}/R\text{tmg} ratio in a range 1.2 - 1.4.

Output voltage and DC-DC converters

DC-DC converters are recommended to use with miniature thermoelectric generators, especially in low dT mode.
Contacts

HEAD OFFICE
46 Warshavskoe shosse. Moscow 115230 Russia
Tel: +7-499-678-20-82
Fax: +7-499-678-20-83
E-mail: info@rmtltd.ru

CHINA
翰铨科技香港有限公司
Hantech Technology
RM566,5/F, Hanjing Mansion, Nanshan District, Shenzhen, China
Tel: +86-0755-86215941
Fax: +86-0755-86053039
Cell: 13760105325
E-mail: bob.han@protecltd.com

XIAMEN ZIBO OPTOELECTRONIC CO. LTD.
Room 120, Chuanye Building, Chuanye Park,
Xiamen Torch Hi-Tech Industrial Development Zone
Xiamen, China, 361006
Tel: +86-592-5654050
Fax: +86-15859204529
QQ: 1592337385
E-mail: wuhang385@foxmail.com (Hardy Wu), wentyliu@foxmail.com (Wenty Liu)

KOREA
Sunflower Energy
1F, 665-6, Pungdeokcheon-dong, Suji-gu,
Yongin-si, Gyeonggi-do, Korea
Tel: +82 312767992
Fax: +82 312767993
Web site: http://www.sunfl.co.kr
Legal Notice

All logos, images, trademarks and product names (collectively Materials) are proprietary to RMT Ltd and/or any of its affiliates, or subsidiaries, or other respective owners that have granted RMT Ltd the permission and/or license to use such Materials. All images are provided by RMT Ltd. and are subjects of copyright protection.

RMT Ltd do not grant a copyright license (express or implied) to the Recipient, except that Recipient may reproduce the logos, images and text materials in this press-release without any alteration for non-promotional or editorial purposes only with a written note about materials owner.

Copyright protection warning

Graphic materials and text from this datasheet may not be used commercially without a prior response in writing on company letterhead and signed by RMT Ltd authority. Thank you for respecting the intellectual property rights protected by the International Copyright laws.

Warning: All datasheet images contain RMT Ltd hidden watermark for the immediate proof of their origin.